$\mathrm{C}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H}$ bond distances were constrained to 1.00 (2) \AA and the H atoms were given one of four common temperature factors (methyl or non-methyl in molecule A or B). Atomic scattering factors from SHELX76. Final $\Delta / \sigma \leq 0 \cdot 5, \Delta \rho$ max. $=0 \cdot 1, \Delta \rho \mathrm{~min}$. $=-0.1 \mathrm{e} \AA^{-3}$. Molecular geometries were generated by the $G X$ package (Mallinson \& Muir, 1985).

(I)

Atomic coordinates are listed in Table 1, bond lengths and valency angles in Table 2 and short intermolecular $\mathrm{O} \cdots \mathrm{O}$ contacts in Table 3.* The atomic arrangement is shown in Fig. 1.

Related literature. DHEA may be obtained commercially or can be synthesized in high yield (Hosoda, Fukushima \& Fishman, 1973). The hydrate of DHEA was isolated by us during a synthesis of 3,5 -cycloandrost- 6β-ol-17-one. Its conformation may be compared with crystal structures of other 5-ene steroids such as androst-5-ene-3,17-dione (Carrell, Glusker, Covey, Batzold \& Robinson, 1978) and 17β-hydroxy- 7α-methyl- 5 -androsten-3-one (Cox, Mkandawire \& Mallinson, 1981).

[^0]Table 3. Short $\mathrm{O} \cdots \mathrm{O}$ contacts (\AA) with e.s.d.'s

$\mathrm{O}(1) \cdots \mathrm{O}\left(3^{i}\right)$	$2.87(1)$
$\left.\mathrm{O}(1) \cdots \mathrm{O} \mathbf{2}^{i}\right)$	$2.87(1)$
$\mathrm{O}(2) \cdots \mathrm{O}\left(23^{i i i}\right)$	$3.03(2)$
$\mathrm{O}(3) \cdots \mathrm{O}(21)$	$2.77(1)$
$\mathrm{O}(3) \cdots\left(23^{i v}\right)$	$2.76(2)$
$\mathrm{O}(21) \cdots \mathrm{O}(23)$	$2.76(2)$

Coordinates transposed by: (i) $2-x,-\frac{1}{2}-y,-\frac{1}{2}-z$; (ii) $x,-1+y,-1+$ z; (iii) $1 \frac{1}{2}-x,-y,-\frac{1}{2}+z$; (iv) $x, y,-1+z$.

Fig. 1. The atomic arrangement in molecule A (50% probability ellipsoids).

References

Carrell, H. L., Glusker, J. P., Covey, D. F., Batzold, F. H. \& Robinson, C. H. (1978). J. Am. Chem. Soc. 100, 4282-4289.
Cox, P. J., Mkandawire, G. J. \& Mallinson, P. R. (1981). Acta Cryst. B37, 727-729.
Gilmore, C. J. (1984) J. Appl. Cryst. 17, 42-46.
Hosoda, H., Fukushima, D. K. \& Fishman, J. (1973). J. Org. Chem. 38, 4209-4211.
Mallinson, P. R. \& Muir, K. W. (1985). J. Appl. Cryst. 18, 51-53.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Acta Cryst. (1990). C46, 336-338

Diisopropylammonium Chloride

By Philippe Prince, Jina A. Miller, Frank R. Fronczek and Richard D. Gandour*
Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA

(Received 30 June 1989; accepted 30 August 1989)

[^1]0108-2701/90/020336-03\$03.00
$F(000)=304, T=295 \mathrm{~K}, R=0.030$ for 556 observations (of 901 unique data). Each \mathbf{H} on the N atom is hydrogen bonded to a Cl atom. $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ bond lengths ($\mathrm{N}-\mathrm{Cl}$ distance) are $3.180(3)$ and 3.163 (3) \AA with $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ angles $176(2)$ and 175 (2) ${ }^{\circ}$ respectively. Each Cl atom is involved in two © 1990 International Union of Crystallography

Table 1. Coordinates and equivalent isotropic thermal parameters

The equivalent isotropic thermal parameter, for atoms refined anisotropically, is defined by the equation: $B_{\mathrm{eq}}=8 \pi^{2}\left(U_{11}+U_{22}+\right.$ $\left.U_{33}\right) / 3$.

	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
\mathbf{H}^{\prime}	0.937 (5)	$0 \cdot 304$ (3)	0.602 (2)	3.6 (7)*
$\mathrm{H}^{\prime \prime}$	0.800 (4)	$0 \cdot 298$ (3)	0.534 (2)	2.7 (6)*
Cl	0.7237 (1)	$0 \cdot 2496$ (1)	0.37219 (6)	4.05 (2)
N	0.8286 (4)	0.3262 (3)	$0 \cdot 5974$ (2)	2.84 (5)
C1	0.8009 (5)	$0 \cdot 5046$ (4)	0.6134 (2)	$3 \cdot 72$ (8)
C2	$0 \cdot 6136$ (6)	0.5464 (5)	0.6037 (4)	$6 \cdot 8$ (1)
C3	0.9084 (7)	0.5930 (5)	0.5376 (3)	$5 \cdot 2$ (1)
C4	0.7373 (5)	0.2114 (4)	0.6666 (3)	3.87 (7)
C5	0.7809 (6)	0.2491 (5)	0.7757 (3)	5.35 (9)
C6	0.7878 (6)	0.0401 (4)	$0 \cdot 6379$ (3)	4.75 (9)
		* $B_{\text {iso }}$.		

Table 2. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{N}-\mathrm{Cl}$	1.504 (4)	$\mathrm{Cl}-\mathrm{C} 2$	1.511 (6)
C4--C5	1.519 (5)	$\mathrm{N}-\mathrm{C} 4$	1.501 (4)
$\mathrm{Cl}-\mathrm{C} 3$	1.501 (5)	C4-C6	1.517 (5)
$\mathrm{N}-\mathrm{H}^{\prime}$	0.87 (3)	$\mathrm{N}-\mathrm{H}^{\prime \prime}$	0.90 (2)
$\mathrm{Cl}-\mathrm{N}-\mathrm{C} 4$	117.6 (3)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 3$	112.0 (3)
C5-C4-C6	111.9 (3)	$\mathrm{N}-\mathrm{Cl}-\mathrm{C} 2$	$110 \cdot 6$ (3)
$\mathrm{N}-\mathrm{C} 4-\mathrm{C} 5$	$110 \cdot 3$ (3)	$\mathrm{N}-\mathrm{Cl}-\mathrm{C} 3$	107.5 (3)
N-C4-C6	108.1 (3)		
$\mathrm{Cl}-\mathrm{N}-\mathrm{H}^{\prime}$	109 (2)	$\mathrm{Cl}-\mathrm{N}-\mathrm{H}^{\prime \prime}$	110 (2)
$\mathrm{C} 4-\mathrm{N}-\mathrm{H}^{\prime}$	107 (2)	$\mathrm{C} 4-\mathrm{N}-\mathrm{H}^{\prime \prime}$	107 (2)
$\mathrm{H}^{\prime}-\mathrm{N}-\mathrm{H}^{\prime \prime}$	105 (3)		

hydrogen bonds. The cation has an approximate twofold axis of symmetry.

Experimental. Colorless needles of (1), m.p. 389390 K , were isolated as an ether-insoluble by-product of a reaction and recrystallized in methanol/ether.

(1)

Crystal size $0.55 \times 0.18 \times 0.15 \mathrm{~mm}, \quad$ capillary mounted, space group from systematic absences $h 00$ with h odd, $0 k 0$ with k odd and $00 l$ with l odd, cell dimensions from setting angles of 25 reflections having $10<\theta<13^{\circ}$. Data collection on an EnrafNonius CAD-4 diffractometer, Mo $K \alpha$ radiation, graphite monochromator, $\omega-2 \theta$ scans designed for I $=25 \sigma(I)$, subject to max. scan time $=120 \mathrm{~s}$, scan rates varied $0.69-4.00^{\circ} \mathrm{min}^{-1}$. Two octants, $2<2 \theta$ $<50^{\circ}, \quad-9 \leq h \leq 9, \quad 0 \leq k \leq 9, \quad 0 \leq l \leq 15$ were collected. Data corrected for background, Lorentz
and polarization effects. No absorption correction was made. Standard reflections 200, 040, 004 indicated a 0.8% intensity decrease, for which a linear correction was applied. The two octants were averaged, $R_{\text {int }}=0.029$, to yield 901 unique data, 556 observed with $I>3 \sigma(I)$. Structure solved by direct methods, using MULTAN (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1982), refined by full-matrix least squares where the function minimized was $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ and weights were assigned as $w=4 F_{o}^{2} \mathrm{Lp}\left[S^{2}\left(C+R^{2} B\right)+\left(0.02 F_{o}^{2}\right)^{2}\right]^{-1}$, where $S=$ scan rate, $C=$ total integrated peak count, $R=$ scan time $/$ background counting time, $B=$ total background count, Lp = Lorentz-polarization factor, using Enraf-Nonius SDP (Frenz \& Okaya, 1980), scattering factors of Cromer \& Waber (1974) and anomalous coefficients of Cromer (1974). Non-H atoms refined anisotropically; H atoms located by ΔF and included as fixed contributions with C-H $0.95 \AA$ and $B=1.3 B_{\text {eq }}$ of the bonded C atom, except for the two H atoms on the N which were refined isotropically. The final cycle included 82 variables and converged (largest $\Delta / \sigma<0.01$) with R

Fig. 1. Numbering scheme and thermal ellipsoids drawn at the 40% probability level. H atoms are drawn as circles with the same arbitrary radius.

\circ
$=0.030, w R=0.033, R(\mathrm{all})=0.102$ and $S=1.295$. Max. residual density $0.22, \min . \quad-0.18 \mathrm{e} \AA^{-3}$, extinction coefficient $\quad g=9(10) \times 10^{-8}$. Coordinates* are given in Table 1; bond distances and angles are given in Table 2. The molecule is illustrated in Fig. 1, and a diagram of the unit cell is shown in Fig. 2.

Related literature. Crystal structures of diisopropylammonium diisopropyldithiocarbamate (Wahlberg, 1978) and of the diisopropylammonium salt of an organoplatinate (Dell'Amico, Calderazzo \& Pelizzi, 1979).

[^2]Support for this work is provided by a grant from the National Institutes of Health.

References

Cromer, D. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.3.1. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2B. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Dell'Amico, D. B., Calderazzo, F. \& Pelizzi, G. (1979). Inorg. Chem. 18, 1165-1168.
Frenz, B. A. \& Okaya, Y. (1980). Enraf-Nonius Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Wahlberg, A. (1978). Acta Cryst. B34, 3479-3481.

Acta Cryst. (1990). C46, 338-340

Structure of Peperomin B

By Tsong-Jen Lee and Tseng-Yuh Lee
Department of Physics, National Tsing Hua University, Hsinchu, Taiwan
and Chiu-Ming Chen
Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan

(Received 30 January 1989; accepted 30 August 1989)

Abstract

C}_{23} \mathrm{H}_{26} \mathrm{O}_{8}, M_{r}=430 \cdot 46\), monoclinic, $P 2_{1}, a$ $=11.044$ (1),$\quad b=9.500$ (2),$\quad c=11.696$ (2) $\AA, \quad \beta=$ $112.39(1)^{\circ}, \quad U=1135 \AA^{3}, \quad Z=2, \quad D_{x}=$ $1.2600 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda($ Mo K $\alpha)=0.71069 \AA, \quad \mu=$ $0 \cdot 104 \mathrm{~mm}^{-1}, \quad F(000)=456, \quad T=297(5) \mathrm{K}, \quad R(F)=$ 0.034 for 2191 observed reflections $[I>3 \sigma(I)$]. The molecule has $1 S, 2 S$ and $4 S$ chiral centers. This work confirmed the unusual seco structure and stereochemistry of peperomin B. The three rings (A, B, C) make rather large dihedral angles with each other.

Experimental. Recrystallized from a 25% aqueous solution of 2-propanol-methanol. CAD-4 diffractometer, graphite monochromator, translucent prismatic crystal ($0.35 \times 0.40 \times 0.50 \mathrm{~mm}$) used for data collection, unit-cell parameters from 25 reflections with $11<2 \theta<25^{\circ}$, data collected by $\omega-2 \theta$ scans, with scan parameters $2(0.8+0.35 \tan \theta)^{\circ}$ and with scan speed $20 / 10$ to $20 / 3^{\circ} \mathrm{min}^{-1}$, three standard reflections ($\overline{5} 35,535,35 \overline{1}$) checked every 2 h varied within $2 \sigma(I)$. Max. $(\sin \theta) / \lambda=0.7035 \AA^{-1}(-15 \leq h$
$\leq 15,0 \leq k \leq 13,0 \leq l \leq 16), 3490$ reflections collected, 2191 significant with $I>3 \sigma(I)$. Empirical absorption correction based on azimuthal rotation from reflections 021, 020 and $0 \overline{2} 0$ (North, Phillips \& Mathews, 1968). Minimum, maximum and average correction factors were $0.94,0.99,0.97$, respectively. The structure was solved by direct methods, using MULTAN82 (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1982). Blockdiagonal least-squares refinement was carried out on positional and anisotropic thermal parameters of non-H atoms over 2191 reflections. The function minimized is $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)$, where $w=1 / \sigma^{2}(F)$ from counting statistics. Positions of the H atoms were geometrically calculated and not refined. In the last stage of least-squares calculation, using the CRYLSQ program (Olthof-Hazekamp, 1988), the $R(F)$ factor reduced to $0.034, S=0.375,(\Delta \rho)_{\max }=$ $0.25 \mathrm{e} \AA^{-3},(\Delta / \sigma)_{\max }=0.0037$. Atomic scattering factors were taken from International Tables for X-ray Crystallography (1974). Final positional and iso-

[^3]
[^0]: * Lists of structure factors, anisotropic thermal parameters, H -atom positions and torsion angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52309 (15 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: * To whom correspondence should be addressed.

[^2]: * Lists of H -atom coordinates, anisotropic thermal parameters and structure-factor amplitudes have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52238 (10 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^3]: (C) 1990 International Union of Crystallography

